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Summary
Objectives: To provide typical examples of biomedical ontologies in
action, emphasizing the role played by biomedical ontologies in
knowledge management, data integration and decision support.
Methods: Biomedical ontologies selected for their practical impact
are examined from a functional perspective. Examples of
applications are taken from operational systems and the biomedical
literature, with a bias towards recent journal articles.
Results: The ontologies under investigation in this survey include
SNOMED CT, the Logical Observation Identifiers, Names, and Codes
(LOINC), the Foundational Model of Anatomy, the Gene Ontology,
RxNorm, the National Cancer Institute Thesaurus, the International
Classification of Diseases, the Medical Subject Headings (MeSH)
and the Unified Medical Language System (UMLS). The roles played
by biomedical ontologies are classified into three major categories:
knowledge management (indexing and retrieval of data and
information, access to information, mapping among ontologies);
data integration, exchange and semantic interoperability; and
decision support and reasoning (data selection and aggregation,
decision support, natural language processing applications,
knowledge discovery).
Conclusions: Ontologies play an important role in biomedical
research through a variety of applications. While ontologies are used
primarily as a source of vocabulary for standardization and
integration purposes, many applications also use them as a source
of computable knowledge. Barriers to the use of ontologies in
biomedical applications are discussed.

Keywords
Biomedical ontologies, knowledge management, data integration,
decision support.
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1   Introduction
The need for standardizing biomedical

vocabulary is not recent. As long ago

as the 17th century, health authorities

in London used a standard list of about

200 causes of death - later integrated

into the International Classif ication of

Diseases - to compile accurate health

statistics known as the Bills of Mortal-

ity [1]. In addition to terms, scientists

such as Linnaeus started formalizing the

relations among biological entities, in

order to represent and share their knowl-

edge of the world [2].

The last decade has seen a marked in-

crease in the number of artifacts cre-

ated for representing biomedical enti-

ties, their terms and their relations,

often referred to as vocabularies, ter-

minologies and ontologies. As shown

in Figure 1, the number of citations on

ontologies and controlled vocabularies

in the PubMed/MEDLINE database has

grown by 600% to about 1200 per

year1. While some authors have pro-

posed definitions for these artifacts [3,

4] and attempted to characterize the dis-

tinctions among them [5], in practice,

these names are often used interchange-

ably. This phenomenon is reflected in

part by the fact that 5-10% of the

PubMed/MEDLINE citations indexed

under the MeSH descriptor "Vocabu-

lary, Controlled" also contain the word

"ontology" (dark section of the histo-

gram in Figure 1.) For the sake of sim-

plicity, we henceforth refer to these

various types of artifacts as ontologies.

Another interesting trend in the past de-

cade is the change in the relative im-

portance of these ontologies, as mea-

sured by the number of mentions in

PubMed/MEDLINE citations. As

shown in Figure 2, the Gene Ontology

(GO) has become the most cited ontol-

ogy, with over 450 citations per year.

In contrast, the footprint of Unif ied

Medical Language System (UMLS)

seems smaller now than ten years ago,

although the number of citations has

remained essentially constant through-

out the decade.

A number of recent reviews have pre-

sented the major biomedical ontolo-

gies to various audiences, most often

with an emphasis on their design and

structural characteristics, mentioning

their use only in passing [6-11]. Other

reviews have presented the role played

by several biomedical ontologies in

specif ic applications, such as clinical

decision support [12] and discovery ap-

plications [13], or in a specif ic do-

main, such as bioinformatics [14]. In

contrast, one review provides a func-

tional perspective on biomedical ontolo-

gies [15]. The interested user is referred

 1 Citations indexed by the MeSH term "Diagnostic and
Statistical Manual of Mental Disorders" (DSM) are
excluded, because, in most articles, DSM is used not
as a terminology, but as a source of diagnostic criteria
for mental diseases.
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to these reviews for more information

about these ontologies.

In the present survey, we analyze some

of the high-impact biomedical ontolo-

gies presented in [7] through the func-

tional lens of [15], classifying their

roles - somewhat arbitrarily - into three

major categories: knowledge manage-

ment, including the indexing and re-

trieval of data and information; data

integration, exchange and semantic

interoperability; and decision support

and reasoning. The three categories,

however, are not mutually exclusive and

we examine the various roles played by

each ontology. For example, LOINC is

used as a source of standard vocabu-

lary for retrieval purposes [16], for the

integration and exchange of laboratory

data [17, 18], and for "reliable execu-

tion of decision logic in clinical deci-

sion support systems" [12]. More gen-

erally, reference ontologies are

designed independently of any particu-

lar applications and expected to be use-

ful in a variety of tasks [19, 20].

The ontologies under investigation in

this survey include SNOMED CT, a

comprehensive concept system for

healthcare [21-23]; the Logical Obser-

vation Identif iers, Names, and Codes

(LOINC), a vocabulary for laboratory

tests and clinical observations [24-26];

the Foundational Model of Anatomy

(FMA), a domain ontology of struc-

tural human anatomy [20, 27]; the Gene

Ontology, a controlled vocabulary for

the functional annotation of gene prod-

ucts across species [28-30]; RxNorm,

a controlled vocabulary of normalized

names and codes for clinical drugs [31-

33]; the National Cancer Institute The-

saurus, a public domain terminology

that provides broad coverage of the can-

cer domain [34-36]; the International

Classif ication of Diseases, the 115-

year-old medical terminology, now part

of a family of health classifications [37,

38]; the Medical Subject Headings

(MeSH), a controlled vocabulary for

the indexing and retrieval of the bio-

medical literature [39, 40]; and the

Unif ied Medical Language System

(UMLS), a terminology integration sys-

tem in which all the above ontologies are

integrated (with the exception of the

FMA, soon-to-be integrated) [41-43].

Some characteristics of these ontologies

(based on information present in the

UMLS) are shown in Table 1, including

scope, number of entities, distribution of

the number of terms per entity, and ex-

istence of a subsumption hierarchy.

Due to the large number of publica-

tions on the subject, this review will

necessarily be superficial. Its objective

is to provide not an exhaustive list of

references, but rather examples, hope-

fully typical, of biomedical ontologies

in action. In order to reflect the state

of the art, the selection of references is

also somewhat biased towards recent

journal articles.

Fig. 1   Evolution of the number of citations in PubMed/MEDLINE on ontologies and controlled vocabularies over the past 10 years (excluding DSM,
the Diagnostic and Statistical Manual of Mental Disorders)

Fig. 2   Evolution of the proportion of citations in PubMed/MEDLINE by ontology.
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# concept names 
Name Ref. Scope # 

concepts Min Max Med Avg 

Subs. 
Hier. 

Version / Notes 

SNOMED CT [21] 
Clinical medicine 
(patient records) 310,314 1 37 2 2.57 yes July 31, 2007 

LOINC [24] Clinical observations and laboratory tests 46,406 1 3 3 2.85 no 
Version 2.21 
(no “natural language” names) 

FMA [25] Human anatomical structures ~72,000 1 ? ? ~1.50 yes (not yet in the UMLS) 

Gene Ontology [28] Functional annotation of gene products 22,546 1 24 1 2.15 yes Jan. 2, 2007 

RxNorm [31] Standard names for prescription drugs 93,426 1 2 1 1.10 no Aug. 31, 2007 

NCI Thesaurus [34] Cancer research, clinical care, public information 58,868 1 100 2 2.68 yes 2007_05E 

ICD-10 [36] 
Diseases and conditions 
(health statistics) 12,318 1 1 1 1.00 no 1998 (tabular) 

MeSH [38] 
Biomedicine (descriptors for indexing the 
literature) 24,767 1 208 5 7.47 no Aug. 27, 2007 

UMLS Meta. [41] Terminology integration in the life sciences 1,4 M 1 339 2 3.77 n/a 2007AC (English only) 

 

2   Knowledge Management

One major role of biomedical ontolo-

gies is to serve as a source of vocabu-

lary, i.e., a list of names for the entities

represented in these ontologies. Strictly

speaking, collecting names is the func-

tion of terminology, not ontology, and

ontology languages such as OWL, the

Web Ontology Language, treat names

as labels or annotations [44]. In prac-

tice, however, most biomedical ontolo-

gies under investigation here (with the

notable exception of LOINC) provide

lists of names for the entities they ac-

commodate, in addition to properties

and relations for these entities. The ter-

minological component of biomedical

ontologies is an important resource for

natural language processing systems

[45] and supports knowledge manage-

ment tasks such as annotation (or in-

dexing) of resources, information re-

trieval, access to information and

mapping across resources. However, the

corpus of entity names present in bio-

medical ontologies covers only in part

the lexicon of the domain (especially

for languages other than English) and

only forms the basis for managing term

variation [46, 47]. As shown in Table

1, the number of terms per entity var-

ies largely among ontologies.

2.1   Annotating Data and Resources
Virtually every ontology in our survey

serves as a source of vocabulary for the

purpose of annotating data or indexing

documents. Besides the prototypical

examples of MeSH, used for indexing

the biomedical literature [39], and the

Gene Ontology, used for the functional

annotation of gene products in several

dozen model organisms [48], many

other ontologies have also been used

for annotation purposes.

Indexing is principally used in refer-

ence to the assignment of entries from

a controlled vocabulary to documents,

e.g., the biomedical literature. While

the indexing of large collections such

as PubMed/MEDLINE is still per-

formed manually for the most part,

automatic indexing systems have been

developed (e.g., [49, 50]). Although the

goal is to assign MeSH descriptors,

these systems often take advantage of

the large set of terms and relations pro-

vided by the UMLS. Systems such as

GoPubMed co-annotate the biomedi-

cal literature to both MeSH and the

Gene Ontology [51].

The indexing of clinical documents is

generally referred to as coding - and

biomedical ontologies are sometimes

called "code sets" [9]. The International

Classif ication of Diseases (ICD) has

been used for over a century for cod-

ing morbidity and mortality and, more

recently, as a coding system for reim-

bursement purposes [52]. SNOMED

CT is becoming adopted as a standard

terminology for electronic health records

by a growing number of countries [21,

53] and has also been evaluated as a

source of vocabulary for clinical re-

search [54]. The UMLS Metathesaurus

as a whole has also been used to sup-

port the coding of clinical documents,

such as surgical pathology reports [55].

Table 1   Characteristics of some biomedical ontologies (including scope, number of entities, distribution of the number of terms per entity [minimum, maximum, median and average], and existence of
a subsumption hierarchy), based on information present in the UMLS (2007AC)
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Like indexing, most coding is still per-

formed manually. However, automatic

techniques have been developed and

evaluated (e.g., for ICD [56-58]), some

of which exhibit high accuracy in lim-

ited domains.

In biology, the functional description

of experimental data is usually referred

to as annotation. Here again, (semi-)au-

tomatic methods for acquiring annota-

tions from text have been investigated

recently [59-63], but annotations are

still most often the product of manual

curation. Functional annotation is not

limited the annotation of gene products

to the Gene Ontology, but can be seen

more generally as a "normalization" pro-

cess applied to datasets, enabling further

processing. For example, [64] used

SNOMED CT and the NCI Thesaurus

to annotate tissue microarray data in the

Stanford Tissue Microarray Database.

Analogously, MeSH was used to anno-

tate mentions of human diseases in the

Gene Expression Omnibus, a public re-

pository of gene expression data, in or-

der to create gene-disease networks [65].

Related to the notion of indexing is that

of term recognition, i.e., the process of

automatically identifying mentions of

entities of interest in text through natural

language processing (NLP) techniques.

A number of biomedical term recogni-

tion systems have been developed for

the biomedical domain, exploiting the

rich sources of vocabulary provided by

biomedical ontologies [45]. UMLS-

based systems include MetaMap [66]

and MetaPhrase [67]. Developed more

recently are systems such as Termine

[68] and Whatizit [69], which cover

genomics (e.g., gene and protein

names) in addition to clinical medicine.

2.2   Accessing Biomedical Information
The main function of the indexing of

large document collections such as

MEDLINE is to support accurate re-

trieval, i.e., with high recall and high

precision. With hierarchical controlled

vocabularies such as MeSH [70] or the

UMLS [71, 72], queries can be ex-

panded to the descendants of the origi-

nal input term, in addition to being

enriched with synonyms, which con-

tributes to improving recall.

More generally, by providing lists of

synonyms, relations among concepts,

high-level categorization and co-occur-

rence information, the UMLS plays a

major role in the retrieval of various

types of documents, not only the bio-

medical literature in MEDLINE [73],

but also medical textbooks available on

the Internet [74], knowledge bases (e.g.,

of medical computational problems

[75]) and medical images [76-78]. Be-

cause they provide terms in several lan-

guages, the UMLS and MeSH have also

been used for cross-language informa-

tion retrieval [79, 80].

Several biomedical search engines ex-

ploit MeSH and the UMLS to provide

access to the biomedical literature, in-

cluding SAPHIRE [81], Essie [82] and

Textpresso [83], as well as web resources

for consumers (e.g., WRAPIN [84],

MedicoPort [85]). Several specialized

search engines have been created as

well. Of particular interest are systems

supporting evidence-based medicine

and answering clinical questions. Such

systems often exploit existing search

engines (or term recognition systems)

[86, 87], and add specif ic constraints

to the search [88, 89].

Besides MeSH and the UMLS, other

biomedical ontologies have been used

for the retrieval of specif ic informa-

tion. In addition to model organism

databases, most microarray experiment

databases can be searched by terms from

the Gene Ontology [90], including

ArrayExpress [91] and the Cancer gene

expression database (CGED) [92]. The

Stanford Tissue Microarray Database

includes a NCI Thesaurus browser for

searching disorders [93]; SNOMED CT

is used in a system that helps patients

f ind physicians with particular exper-

tise [94]; and medical web resources

are indexed with the International Clas-

sif ication of Diseases in the

HealthCyberMap [95]. In the case of

Emily [96], the ontology itself - here

the Foundational Model of Anatomy -

is used as the knowledge source for

question answering purposes. Finally,

some search engines such as GoPubMed

organize the documents according to

two ontologies and support searches on

either ontology or both [51]. For ex-

ample, a search on "COX-2" in

GoPubMed, shows index terms from

both MeSH (Cyclooxygenase 2) and

the Gene Ontology (cyclooxygenase

pathway).

The automatic classif ication of bio-

medical documents is also generally

supported by ontologies. For example,

the high-level categorization of UMLS

Metathesaurus concepts with semantic

types from the Semantic Network has

been used for topic detection in medi-

cal texts [97], as well as document clus-

tering [98]. The hierarchy of MeSH

terms is used in [99] for the purpose of

categorizing MEDLINE documents.

Even when they do not exploit their

structure, some document classification

systems use the list of synonyms pro-

vided by ontologies such as MeSH and

the Gene Ontology to aggregate docu-

ment features (i.e., using concepts as

features instead of words) [100].

2.3   Mapping across Biomedical
Ontologies
The availability of several dozen bio-

medical ontologies is both a blessing

and a curse. On the one hand, users can

choose from a variety of ontologies and

select the artifact that best f its their

purpose. On the other, resources anno-
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tated to different ontologies become

more difficult to integrate, unless map-

pings are created among ontologies in

order to identify equivalent concepts

across ontologies. This issue was iden-

tif ied several decades ago and was in

part the motivation for creating the

Unif ied Medical Language System

[42]. In effect, the UMLS Meta-

thesaurus is a terminology integration

system, in which synonymous terms

from various terminologies are clus-

tered into concepts, allowing for the

seamless mapping between terms from

different terminologies through a

UMLS concept [41]. As mentioned ear-

lier, these groupings of terms are often

exploited for query expansion purposes

in information retrieval. Some termi-

nologies provide mapping information

to other terminologies (e.g., SNOMED

to ICD-9-CM), which, in some cases is

recorded in the UMLS. Such features

of the UMLS have been used for map-

ping between MeSH and SNOMED CT

in the context of a digital library [101].

However, due to large differences in

scope and granularity among vocabu-

laries, direct mapping through syn-

onymy and built-in mapping informa-

tion fails to provide mapping for most

concepts. In addition to these features,

the hierarchical and associative relations

among UMLS concepts have also been

exploited for automatic mapping pur-

poses (sometimes in combination with

lexical mapping [102, 103]), allowing

concepts from one terminology to be

mapped to more generic concepts in an-

other terminology [104, 105]. Other

large ontologies such as SNOMED CT

have also been exploited for mapping be-

tween clinical terminologies [106].

Analogously, the Foundational Model of

Anatomy has been used as a reference

for aligning anatomical ontologies [107].

Finally, medication reconciliation, i.e.,

the process of comparing a patient's medi-

cation orders to all of the medications

that the patient has been taking, can be

facilitated by the mapping among drug

vocabularies realized in systems such

as RxNorm and the UMLS [108], as is

the exchange of medication informa-

tion between federal agencies [109].

3   Data Integration, Exchange
and Semantic Interoperability
Biomedical ontologies are often cited

as an important element of semantic

interoperability and information ex-

change in biomedicine, along with mes-

saging standards and clinical informa-

tion models [110]. For example, [111]

notes the role of ontologies (called

"standards") in the standardization of

patients data to be exchanged across

electronic health record (EHR) systems,

contributing to connect "islands of

data". Analogously, ontologies are key

to clinical guideline models such as

SAGE [112], where they standardize the

representation of knowledge, thus fa-

cilitating maintenance, sharability and

interoperability with EHR systems

[112]. Ontologies also play a major

role in the integration of heterogeneous

data from disparate sources, which is a

critical to translational research [113].

3.1   Information Exchange and
Semantic Interoperability
The use of RxNorm, UMLS, and

SNOMED CT is reported in [114] as part

of a mediation strategy to exchange medi-

cation data between the Veterans Affairs

(VA) and the Department of Defense

(DoD) clinical information systems.

LOINC is used widely in the exchange

of laboratory data [18, 115], often in con-

junction with HL7 [116].

Semantic interoperability projects such

as BRIDG, CDA and caCORE also rely

on ontologies, although indirectly in

most cases. The BRIDG model, devel-

oped by the Biomedical Research Inte-

grated Domain Group, is an informa-

tion model designed to "support prac-

tical application and data interchange"

for clinical research [117]. Semantic

interoperability between clinical trials

information systems is supported in

BRIDG through semantic harmoniza-

tion. Although BRIDG stopped short

of binding the information model to spe-

cific ontologies, its developers acknowl-

edge the role ontologies in semantic inter-

operability. (Methods for binding clinical

terminologies to information models are

presented in [118], and [119] has in-

vestigated the mapping of the Outcome

and Assessment Data Set (OASIS-B1)

to LOINC and other terminologies).

The HL7 Clinical Document Architec-

ture, Release 2 (CDA R2) model is

"richly expressive, enabling the for-

mal representation of clinical state-

ments", including clinical observa-

tions, medication administrations, and

adverse events [120]. CDA R2 associ-

ates the HL7 Reference Information

Model with terminologies such as

LOINC, SNOMED CT and RxNorm

for representing the semantics of a

clinical document.

The Common Ontologic Representation

Environment (caCORE) is a model-

driven infrastructure developed to sup-

port an interoperable biomedical infor-

mation system for cancer research

[121]. Ontologies, including the NCI

Thesaurus [35], represent an important

element of this infrastructure.

3.2   Information and Data Integration
Ontologies support data integration in

two different ways, corresponding to

two different approaches to data inte-

gration: warehousing and mediation

[122]. One the one hand, by providing

a controlled vocabulary in a given do-

main, ontology support the standard-
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ization required from warehousing ap-

proaches to data integration, in which

the sources to be integrated are trans-

formed into a common format and con-

verted to a common vocabulary. For ex-

ample, the integration of model organism

databases is facilitated by the existence

of the Gene Ontology, used - natively or

after conversion - for the functional an-

notation of gene products in many spe-

cies [48]. Analogously, the integration

of data from microarray experiments

benefits from the standardization of their

description with ontologies [123].

On the other hand, mediation-based

approaches use ontologies for defining

a global schema (in reference to which

queries are made) and mapping be-

tween the global schema and local

schemas (the schemas of the sources to

be integrated). TAMBIS [124], the

BioMediator [125] and OntoFusion

[126] provide examples of such sys-

tems. The UMLS is used (along with

the Gene Ontology) for the creation of

the global schema in OntoFusion. A

similar approach, also based on the

UMLS, is used in ARIANE [127], a sys-

tem that provides access to heteroge-

neous medical databases.

More generally, ontologies facilitate the

integration of datasets, often by pro-

viding a common reference for bio-

medical entities in several datasets. For

example, LOINC has been used for in-

tegrating laboratory data with adverse

events [128], the Foundational Model

of Anatomy for the integration of ge-

nomic information sources [129], and

SNOMED CT for the integration of

disease and pathway information [130].

4   Decision Support and
Reasoning
Ontologies represent domain knowl-

edge in computable, reusable form

[131]. Simple ontologies (e.g., limited

to subsumption hierarchies) are useful

for data aggregation and clustering.

Rich ontologies comprise large net-

works of associative relations among the

entities of a given domain. Such on-

tologies provide domain knowledge to

applications and support the interpre-

tation of relations identified in datasets

through data mining processes based on

linguistic or statistical techniques. Five

broad kinds of applications of ontolo-

gies are discussed next: data selection,

data aggregation, decision support,

natural language processing, and

knowledge discovery.

4.1   Data Selection
Many clinical and epidemiological re-

search studies involve the creation of

groups (from an independent variable)

whose characteristics (dependent vari-

ables) are examined for differences

(e.g., survival rate at five years in breast

cancer patients). By providing an ab-

straction of some domain, ontologies

can help def ine groups from a high-

level value for the independent vari-

able (e.g., breast cancer), instead of list-

ing all possible values (e.g., cancer of

upper-inner quadrant of breast, of

lower-outer quadrant, etc.). The Inter-

national Classif ication of Diseases is

used pervasively for selecting groups

of patients in association with a high-

level disease category. For example, in

a study of emergency department vis-

its for supraventricular tachycardia

(SVT), the selection of cases of SVT

was based on the descendants of 2 high-

level ICD codes. Analogously, [132]

calculated survival risk ratios for

trauma patients for various groups of

hierarchically-def ined diagnostic cat-

egories in ICD and [133] used high-

level ICD codes in a study of stroke

hospitalization over time. Many other

ontologies are used for data selection

purposes, including SNOMED CT,

used for querying clinical data ware-

houses [134]. A hierarchical structure

was added to LOINC in order to facili-

tate public health reporting [135].

4.2   Data Aggregation
In addition to data selection, ontolo-

gies are used for identifying the char-

acteristics of groups obtained through

various methods (e.g., the characteris-

tics of patients in a group of long-term

cancer survivors). Here again, ontolo-

gies support the aggregation of charac-

teristics and ICD is often used for ag-

gregating diagnoses. For example, in a

study of the evolution over time of dis-

charge diagnoses in emergency depart-

ments, the major categories of diag-

noses investigated correspond to the

top-level categories in ICD-10 [136].

(The accuracy of such studies, which

depends on the quality of the coding

and the type of study, is discussed in

[137, 138]).

In biology, microarray technologies for

measuring gene expression typically

identify groups of genes up- and down-

regulated under certain circumstances

[139]. The simultaneous activity (or in-

activity) of genes in these groups repre-

sents only one clue into their participa-

tion in biological activities and such

groups of genes generally require fur-

ther characterization, especially through

functional annotations [140]. Some fifty

tools have been developed to date for the

characterization of gene sets, exploiting

Gene Ontology annotations [141] and

other resources (e.g., Onto-Express [142]

and GoMiner [143]). Some tools specifi-

cally take advantage of the hierarchical

organization of terms in the Gene On-

tology (e.g., [144]). Several tools also

use MeSH descriptors for characterizing

sets of genes [145], sometimes in com-

bination with Gene Ontology terms [146,

147]. The functional characterization of
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gene expression signatures is used widely.

A search combining "gene ontology" and

"gene expression" in PubMed/

MEDLINE yields over 800 citations. A

recent trend in gene expression profil-

ing is co-clustering, i.e., the use of func-

tional annotations not for the post hoc

characterization of gene sets, but as part

of the clustering process itself [148-150].

One limitation of data aggregation

based on hierarchies is the heteroge-

neous density of terms throughout the

ontology (i.e., some branches are more

richly developed than others). Seman-

tic similarity metrics based on infor-

mation content have been developed to

address this issue and successfully ap-

plied to the Gene Ontology [151]. These

metrics provide a new approach to clus-

tering genes [152].

4.3   Decision Support
Clinical decision support systems gen-

erally benef it from ontologies in two

principal ways. First, as mentioned ear-

lier, ontologies provide a standard vo-

cabulary for biomedical entities, help-

ing standardize and integrate data

sources [12]. For example, a system for

drug allergies must be able to resolve

drug names into standard codes and map

between drug coding systems and the

allergy knowledge base. Second, on-

tologies are a source of computable

domain knowledge that can be exploited

for decision support purposes, often in

combination with business rules [153,

154]. For example, in an alert system

for drug allergies, allergy to betalactams

can be represented eff iciently if the

system can access a classif ication of

drugs (as opposed to direct links to spe-

cif ic drugs). The interested reader is

referred to [155] for a discussion about

the role of ontologies in specif ic clini-

cal decision systems. Issues discussed

earlier about knowledge management

support for evidence-based medicine

(2.2) and the role of ontologies in clini-

cal guidelines (3.1) are also relevant to

clinical decision support.

Besides clinical decision support, ontolo-

gies support reasoning in applications.

The Foundational Model of Anatomy

(FMA) was used as a source of anatomi-

cal knowledge for reasoning about pen-

etrating injuries, more exactly for pre-

dicting the consequences of penetrating

injury [156]. In this application, knowl-

edge about spatial relations between the

path of injury and vital organs is pro-

vided by the FMA. The availability of

the NCI Thesaurus in OWL (Web On-

tology Language) format makes it ame-

nable to automatic processing by

reasoners developed for OWL, enabling

consistency checking and automatic

classif ication. Leveraging such auto-

matic reasoning services, [157] devel-

oped an automatic grading system for

gliomas. Ontologies sometimes partici-

pate indirectly in reasoning processes.

For example, [158] emphasizes the role

of the Gene Ontology in the extraction

of information required for creating an

ontology of phosphatases. This ontol-

ogy was subsequently used for reason-

ing about phosphatases. Although iso-

lated, these examples illustrate the

potential benef it of ontologies for de-

cision support and reasoning.

4.4   Natural Language Processing
Applications
As mentioned earlier, Natural Lan-

guage Processing (NLP) techniques

support term recognition, exploiting

the vocabulary provided by biomedi-

cal ontologies. Ontologies also provide

the domain knowledge necessary for

advanced NLP applications, including

information extraction for a specif ic

task, relation extraction, document sum-

marization, question answering, litera-

ture-based discovery, and more gener-

ally, text mining [45].

While term recognition systems merely

identify entities in text, advanced sys-

tems identify specialized facts - some-

times on the basis of information pro-

vided by term recognition systems - used

to guide specific applications (e.g., men-

tions of smoking in patient records, used

for selecting cases [159]; medical prob-

lems from patient records, used to main-

tain problem lists [160]; respiratory find-

ings from emergency department reports,

for biosurveillance purposes [161]). Sys-

tems such as BioCaster [162] and

EpiSpider [163] apply term recognition

techniques to health news feeds and in-

tegrate the extracted information with

other resources (including ontologies),

creating what is known as "mashups".

These resources can help track cases of,

say, avian influenza and support

biosurveillance and public health.

In addition to entity recognition, some

systems extract relations (i.e., facts as-

serted in text), thus "interpreting" the

text. Example of such systems exploit-

ing the UMLS for processing clinical

text and the biomedical literature in-

clude SemRep [164], (Bio)MedLEE

[165, 166] and commercial systems

such as Tessi [167]. More specifically,

SemRep draws on MetaMap for identi-

fying entities in text and relies on the

UMLS Semantic Network as its source

of domain knowledge for the interpre-

tation of the semantic predication it

extracts [164].

The UMLS has been used in advanced

NLP applications including question-

answering systems [168-171] and the

summarization of medical documents

[172-174]. More generally, NLP tech-

niques have evolved to support the

high-throughput processing of the bio-

medical literature [175], in a similar

fashion to the high-throughput process-

ing of genomic data enabled by se-

quence alignment techniques. Massive

amounts of data such as the MEDLINE

database are now routinely exploited,
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often in combination with ontologies,

for hypothesis generation and knowl-

edge discovery purposes. Literature-

based discovery systems take advantage

of the UMLS and MeSH as sources of

knowledge, which are combined with the

knowledge extracted from text to sup-

port the discovery process [176-179].

4.5   Knowledge Discovery
By supporting the high-throughput pro-

cessing of biological and clinical data,

ontologies are a component of the data-

driven approach to biomedical research,

synergistic with the traditional hypoth-

esis-driven approach [180]. Moreover,

data mining often operates on datasets

resulting from the integration of het-

erogeneous resources, also supported by

ontologies [181].

Because of the availability of datasets

coded with the International Classif i-

cation of Diseases (ICD), clinical data

exploration often involves the mining

of ICD codes, along with, for example,

geographic data [182] or meteorologi-

cal data [183]. The availability of large

volumes of data makes it possible to

detect rare events, such as adverse re-

actions to drugs (e.g., diabetic ketoaci-

dosis [184] and hepatic toxicity [185]).

In biology, the functional annotations

of gene products from multiple model

organisms to the Gene Ontology rep-

resent an important knowledge source,

often mined in combination with se-

quence similarity [186, 187], gene ex-

pression data [188, 189], or both [190].

Predicting the molecular function or

subcellular localization of uncharac-

terized genes is an active f ield of re-

search. While most methods exploit the

annotations of related gene products to

the Gene Ontology, some also take ad-

vantage of the hierarchical structure of

the Gene Ontology [191].

Finally, as mentioned earlier, ontolo-

gies have been used for identifying re-

lations between genotype and pheno-

type, both for the vocabulary they pro-

vide [65, 166], and for the relations

among entities asserted in these ontolo-

gies [192]. Ontologies have also been

used for creating and interpreting gene

networks [193, 194], as well as drug-

target networks [195].

5   Discussion
Ontologies have become important re-

sources for biomedical research and

researchers have come to rely on on-

tologies such as the International Clas-

sif ication of Diseases and the Gene

Ontology in a large variety of appli-

cations, taking their existence for

granted. There are still barriers, how-

ever, to the use of ontologies in bio-

medical applications, including avail-

ability, discoverability, the formalisms

used for their representation, integra-

tion and quality.

Availability. A large number of ontolo-

gies are freely available, including

LOINC, the Foundational Model of

Anatomy, the Gene Ontology, the NCI

Thesaurus and MeSH. Because some of

the ontologies integrated in the UMLS

are subject to intellectual property re-

strictions, however, its users must sign

a license agreement to get access to the

UMLS content. RxNorm follows the

same model, although the part of its

content owned by the National Library

of Medicine is made freely available

through a browser and an application

programming interface [196]. Finally,

the availability of SNOMED CT to

users depends on whether their coun-

try is a member of the International

Health Terminology Standards Devel-

opment Organization2 (IHTSDO). Be-

ing freely available is one of the require-

ments for ontologies to be included in

the Open Biomedical Ontology reposi-

tory [197], as it is also expected from

the ontologies used in the Semantic Web.

Discoverability. With over 140 ontolo-

gies, the UMLS is the largest reposi-

tory of biomedical ontologies (acces-

sible through the Knowledge Source

Server [198]), but its coverage is some-

what biased towards healthcare appli-

cations. The National Center for Bio-

medical Ontology's BioPortal [199]

provides access to about ninety ontolo-

gies, including those from the Open

Biomedical Ontology (OBO) collec-

tion, with a bent for biological ontolo-

gies. Ontologies such as the Gene On-

tology and the NCI Thesaurus are

present in both collections. While use-

ful, these two resources do not com-

pletely compensate for the lack of a

registry allowing users to discover bio-

medical ontologies corresponding to

their needs, which leads to both the

underutilization of existing but

unpublicized resources, and the devel-

opment of roughly similar artifacts by

independent groups.

Formalism. The ontologies integrated

in the UMLS are all converted to the

so-called RRF format, regardless of

their native representation formalism.

RRF supports the representation of both

the terms and relations natively present

in these ontologies and the concept-ori-

ented view superimposed by the UMLS.

On the other hand, most ontologies

available on BioPortal are represented

in OBO format, the others being in

frame-based Protégé or OWL format.

Despite the availability of converters

between OBO and OWL (e.g., [200])

and terminology servers supporting

multiple formats, such as LexGrid

[201], the multiplicity of formats re-

mains an impediment to the use of bio-

medical ontologies.

Integration. There are basically two ap-

proaches to integrating ontologies. On2 http://www.ihtsdo.org/
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the one hand, the UMLS realizes the

post hoc integration of ontologies, from

the bottom up, without interfering with

the development process or governance

of the ontologies being integrated. On

the other, the OBO Foundry promotes

a model of coordinated development of

ontologies [202]. Both approaches are

useful to data integration. By integrat-

ing existing ontologies "as is", the

former only links them to the extent

possible (as they might show limited

compatibility), but has the advantage

of facilitating the integration of the vast

datasets annotated to these ontologies

(e.g., ICD, MeSH). On the other hand,

the top-down approach of the OBO

Foundry model ensures consistency ab

initio, but is virtually impossible to

apply retrospectively to large, widely

used, legacy ontologies.

Quality. Intuitively, the poor quality

of some ontologies might result in in-

accuracies in the applications they sup-

port. In practice, assessing the quality

of biomedical ontologies with intrin-

sic criteria is diff icult and might be

futile if disconnected from practical

applications [203]. On the one hand,

the evaluation of quality can be seen

as the responsibility of users, who can

share their experience with other us-

ers by commenting on the usefulness

of a given ontology (or part thereof)

from the perspective of their applica-

tion. This constitutes a democratic ap-

proach to quality evaluation. For oth-

ers, the determination of the quality

of ontologies should be based solely

on science and left to an oligarchy of

specialists [204]. While the accuracy

of statements in ontologies is impor-

tant, other factors such as installed base

(how many users does it have?) and

governance (who makes decisions

about development and maintenance?)

also need to be taken into account when

selecting an ontology for a given ap-

plication.

6   Conclusions
Ontologies play an important role in

biomedical research through a variety

of applications. They provide the con-

trolled vocabulary required for the an-

notation of biological datasets, the bio-

medical literature and patient records,

facilitating the retrieval of and, more

generally, access to information. Such

standardization also facilitates the ex-

change of information and contributes

to semantic interoperability among sys-

tems. By providing a representation of

a domain, ontologies are also used in

the mediation approach to integrating

datasets. Finally, many applications use

ontologies as a source of computable

domain knowledge, including natural

language processing applications and

decision support systems. Ontologies

are also critical to hypothesis genera-

tion and knowledge discovery in a data-

driven approach to biomedical research.
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